

Understanding Forage Yield, Nutritive Value and Quality

Karla A. Hernandez, PhD CED and Livestock Agent DeSoto County

Ruminant Use of Forage Crops

> Microbial breakdown of fiber in digestive tract

- > Cellulose
- > Hemicellulose

What is Forage Quality

- > Ultimate measure is animal performance
- > Other factors include:
 - > Nutritional value
 - > Voluntary intake
 - > Anti-quality constituents

What is Forage Quality

General Forage Composition

- Cell contents
 - > Proteins
 - Organic acids
 - > Lipids
 - > Starch
 - Sugars
- > 90-100% digestible

- Cell walls
 - Structural carbohydrates
 - > Cellulose
 - Hemicellulose
 - Lignin
 - Cutin
 - Silica
 - Pectin
- Variable digestibility
- Major determinants of animal performance on forage diets

Cell Wall Carbohydrates

Cellulose

- Glucose connected together
- Interlinked to form microfibrils
- > Slowly digested
- > Hemicellulose
 - > Multiple carbohydrate types connected
 - > 3 to 4 times higher in grasses than legumes
 - Variably digested
- > Pectins
 - Found in middle lamella and primary cell wall
 - Glue cells together
 - > Higher in legumes than grasses

Lignin

- > Phenolic compound
- > Adds rigidity to plant
- > Interspersed in cellulose
- > Indigestible
- > Suppresses digestibility of other cell wall material
- > 3-12% lignin in forage crops
- > Higher in legumes than grasses

The Cell Wall

The Cell Wall

Forage Nitrogen

> Protein N

- > 60-80% of total N in fresh forages
- Generally, legumes > cool-season grasses > warm-season grasses
- Digestible protein N
- > Indigestible protein N
- > Nonprotein N
 - > 20-40% of total N in fresh forages
 - Nitrates
 - Free amino acids
 - Small peptides
- Crude protein
 - > Includes protein N and nonprotein N
 - Equals total N x 6.25

Factors Affecting Forage Quality

- Forage species
- Stage of maturity
- Harvest conditions
- > Temperature
- > Moisture
- > Soil fertility
- Cultivar
- > Others

Plant anatomy and morphology

Plant Anatomy and Morphology

- Affected by other management factors and species
- Leaves higher quality than stems
- Cell types impact quality
- Leaf to stem ratio

Plant Species

Generally, legume > cool-season grass > warm-season grass

Major Types of Forage Species

Plant Species

Table 16.1. Tissue types in leaf cross sections of a warm-season (bermudagrass) and acool-season (tall fescue) forage grass

Cell type	Bermudagrass	Tall fescue
	% of leaf cross s	ection area
Vascular bundles	37	11
Epidermis	26	19
Sclerenchyma	10	7
Mesophyll	27	62

Source: Akin and Burdick 1975.

Species	Crude protein (%)	NDF (%)	ADF (%)	Cell wall digestibility ^a	Cell wall digestion rate ^b (%/hour)
Alfalfa	15.8	49	34	46	5.3
Timothy	9.5	66	38	57	2.3

Table 16.2. Forage quality of alfalfa and timothy components of a mixture

Source: Collins 1988.

^aThe percentage of the sample NDF lost during 72 hours of incubation in a rumen fluid-buffer solution mixture.

^bThe percentage of the digestible cell wall material disappearing during each hour of incubation.

Stage of Maturity

- > Quality declines as forages mature
- Leaf:Stem ratio declines with maturity

Stage of Maturity

Maturity Stage

Miscellaneous Forage Quality Factors

- > Grass/legume mixtures
- Fertilization (grasses mainly)
 - Possibly increase quality
 - Increase yield
- Environment
 - > Temperature
 - Cutting time during the day
- Cultivar

Evaluating Forages for Quality

Forage quality needs of cattle and horses

Adapted from Undersander et al., 1994

Interpreting Forage Test Results

Interpreting Forage Test Results

Definitions

Dry matter (DM): Amount of plant sample remaining after all water has been removed. USE THESE VALUES.

<u>Crude protein (CP)</u>: Total nitrogen multiplied by 6.25. Includes both true protein and nonprotein nitrogen.

<u>Neutral detergent fiber (NDF):</u> Percentage of fiber or cell walls in a feed, inversely related to intake, and only partially digestible. Made up primarily of hemicellulose, cellulose, and lignin.

<u>Acid detergent fiber (ADF)</u>: Percentage of highly indigestible and slowly digestible plant material. Composed primarily of cellulose and lignin.

Interpreting Forage Test Results

Definitions

Digestible dry matter (DDM): Percentage of sample which is digestible to an animal. Often calculated from ADF.

Dry matter intake (DMI): An estimate of the amount of forage an animal will consume if fed entirely the tested forage. Commonly calculated from NDF.

<u>Relative feed value (RFV)</u>: An index used to compare like forages. **RFV** is calculated from DDM and DMI. Full-bloom alfalfa typifies a forage with an RFV of 100.

RFV Example Calculation

Equations

DDM = 88.9 - (0.779 * %ADF) DMI = 120 / %NDF RFV = (DDM * DMI) / 1.29

Example (assume 35% ADF and 43% NDF) DDM = 61.6% DMI = 2.79% RFV = 134

Use/Abuse of RFV

> Used in hay marketing (buying and selling)

> Should be used to compare like forages

Forage Quality Standards

Quality standards for legumes, legume-grass mixtures, and grasses.

Quality Standard	СР	ADF	NDF	RFV
		• % of DM		
Prime	>19	<31	<40	>151
1	17-19	31-35	40-46	151-125
2	14-16	36-40	47-53	124-103
3	11-13	41-42	54-60	102-87
4	8-10	43-45	61-65	86-75
5	<8	>45	>65	<75

Proposed Hay Testing Guidelines

Alfalfa and alfalfa/grass hay

Quality	ADF	
Standard	% of DM	RFV
Supreme	< 27	> 180
Premium	27-30	150-180
Good	30-32	125-150
Fair	32-35	100-125
Low	> 35	< 100

Proposed Hay Testing Guidelines

Grass hay				
Quality Standard	CP (%)			
Premium	> 13			
Good	9-13			
Fair	5-9			
Low	< 5			

Example Comparison of Old Standards and New Guidelines

	Alf		
Quality meas.	Haylage	Hay	Limpograss
Moisture (%)	27.8	10.8	11.3
CP (%)	20.2	18.7	15.5
ADF (%)	57.5	30.7	37.1
NDF (%)	60.6	39.3	59.0
DDM (%)	44.0	65.0	60.0
DMI (%)	2.0	3.1	2.0
RFV	67	154	95
AFGC std.	Std. 5	Prime	Std. 3
New guide	Low	Premium	Premium

Hay Sampling Demonstration

Sampling

- > **Representative Sample**
- **>** Results Only as Good as Sample

What Was Examined:

- > 7 'Lots' of hay with a wide range of forage quality (smaller than normal, still 'lots')
- > Within Bale Variation--how much is there?
- > Does it matter how many cores are taken?
- > Why not a grab sample?
- > Why not just 2-3 cores?
- > Why not mix hay lots

Hay Sampling Demonstration: 7 Hay Lots

- Lot 1: 1999 Fourth Cut Excellent Quality 1,000 lb. Bales
- Lot 2: 1999 First Cut Rain-Damaged Hay 1,000 lb. bales
- **Lot 3: 2000 First Cut Hay Excellent Quality 80 lb. bales**
- Lot 4: 1999 Third Cut Medium Quality 80 lb. bales
- **Lot 5: 2000 First Cut Good Quality 1,000 lb. bales**
- Lot 6: 1999 Third Cut w/Bleach 1,000 lb. bales
- **Lot 7: 2000 First Cut 700 lb. Round Bales**

Hay Sampling Demonstration: Crude Protein

Crude protein (%) determination using 20-, 3-, and 1core samples or a grab sample from 7 hay lots.

Hay Lot	20 Cores	3 Cores	1 Core	Grab
1	21.6	21.5	22.0	20.0
2	20.4	21.5	22.2	17.0
3	18.9	19.9	20.4	17.6
4	19.0	20.8	19.7	19.0
5	19.4	18.7	18.5	15.5
6	20.1	21.5	21.8	17.3
7	19.9	18.9	19.1	15.1
Average	19.9	20.5	20.5	17.5

Hay Sampling Demonstration: ADF

Acid detergent fiber (%) determination using a 20-, 3-, or 1-core sample or a grab sample from 7 lots of hay.

Hay Lot	20 Cores	3 Cores	1 Core	Grab
1	22.5	23.8	23.5	25.9
2	42.7	41.4	42.4	47.5
3	31.9	31.0	30.7	34.1
4	38.3	36.5	36.1	37.4
5	30.6	29.1	32.5	34.2
6	35.2	34.1	33.3	37.9
7	36.3	36.8	36.7	42.1
Average	33.9	33.2	33.6	37.0

Hay Sampling Demonstration: NDF

Neutral detergent fiber (%) determination using a 20-, 3-, or 1-core sample or a grab sample from 7 hay lots.

Hay Lot	20 Cores	3 Cores	1 Core	Grab
1	29.8	30.8	31.0	33.2
2	55.8	54.3	56.4	60.7
3	37.8	37.1	37.7	40.7
4	47.4	47.3	45.7	45.4
5	36.4	35.6	38.8	40.4
6	43.6	42.4	41.2	48.1
7	44.2	45.2	44.2	48.8
Average	42.1	41.8	42.1	45.3

Hay Sampling Demonstration: **RFV**

Relative feed value determination using a 20-, 3-, or 1-core sample or a grab sample from 7 hay lots.					
Hay Lot	20 Cores	3 Cores	1 Core	Grab	
1	223	213	212	192	
2	93	97	92	80	
3	158	163	160	143	
4	116	119	124	123	
5	167	173	153	143	
6	131	137	142	115	
7	128	124	127	107	
Average	145	144	146	129	

Variation in CP by core number--Lot 5

Variation in ADF by core number--Lot 5

Variation in RFV by core number--Lot 5

Sampling locations in large square bales

Standardized Sampling Guidelines

- Identify a single lot of hay (<200 tons)</p>
- Choose an appropriate, sharp coring device (3/8"-3/4" in diameter)
- Sample at random (don't avoid bales)
- > Take enough cores to represent a lot (at least 20)
- > Use proper technique (90° angle, 18"-24" deep)
- > Handle samples correctly (plastic bags, heat)
- > Appropriate size: not too big, not too small (1/2 lb)
- Only split samples after grinding if you want to test different labs