

Objectives

- Define Mastitis
- Identify methods for detecting mastitis in goats
- Understand the effects of Mastitis in the milk
- Identify factors that affect milk quality and production
- Identify proper milking parlor practices
- •Identify preventive practice for reducing the risk of mastitis in dairy goats

Milk Goat Inventory – United States: January 1, 2015 and 2016

Milk Goat Inventory – United States: January 1, 2015 and 2016

2016 as percent of **2015**

Introduction

Dairy goat milk products are considered specialty foods. Demand and product sales have grown steadily as consumers have become more aware of the potential health benefits of goat milk

- Higher protein content
- Lower allergens
- Lower cholesterol concentrations

Mastitis Definition:

(Mastos = Breast; Itis = Inflamation of; Greek)

Inflammation of the mammary gland, usually caused by pathogenic bacteria

Decreases milk <u>production</u> (yield), milk <u>quality</u> (composition) and profitability

All producers should aim for

- Productivity:
 - Produce the maximum
 quantity of high quality milk
 from their cows at lowest
 cost

Mastitis increases costs:

- Reducing milk quality
- Reducing milk quantity

Economic losses due to mastitis

Gestation: 5 month

Days in Milk production: 300 Days

Average production: 5 pound (0.5814 Gallons, 2.20L)

Conversion Gallon to pounds 1 gallon (3.8L) = 8.6 pounds (3.9kg)

300 days of lactation/year *0.5414 production/day = 162.42 gallons

1 gallon	5 pounds	=0.5814
8.6 pounds		Gallon/ daily per goat

Milk price estimate/gallons	Production per Gallons/ Year	Estimate Value of goat raw milk in Markets	Estimate Value of 100 Goat in the year	US DGO Estimate of Mastitis 20%	Estimate loss base in Inventory 375,000 Heads
\$4.00	162.42	\$649.68	\$64,968	\$12,993.60	\$48,726,000
\$6.00	162.42	\$974.52	\$97,452	\$19,490.40	\$73,089,000
\$8.00	162.42	\$1,299.36	\$129,936	\$25,987.20	\$97,452,000

Forms of mastitis

1. Subclinical

Milk and udder appear normal but bacteria can be cultured from milk
 +/or milk has an elevated <u>leukocyte (WBC) or somatic cell count</u>.

2. Clinical:

- Milk shows abnormalities such as clots, flakes, blood, or is watery
- Udder is swollen, red, black, indurated, or painful to touch
- Pain, fever, depression, weakness
- Death

Abnormal milk

Bacterial Infection (microorganisms in milk)

- •Enterococcus faecium
- ·Bacillus spp.
 - Gram-negative Bacillus
 - Gram-positive Bacillus
- ·Staphylococcus spp.
 - Staphylococcus aureus
 - Staphylococcus caprae
- Streptococcus spp.
- Corynebacterium spp.
- ·Mycoplasma spp.

Staphylococcus spp.

Streptococcus spp.

How is milk quality measured?

Bacterial count

Chemical residues

Bacterial Count

Human illness

Milk-borne diseases (Salmonella, TB)

Bad taste

Rancidity, saltiness

Reduces quality

Lowered protein, butterfat, lactose

Reduces shelf-life

Enzymatic breakdown of milk

Exceeding Preliminary incubation limits

Preliminary incubation

- I should remain below 25,000 to 50,000 cfu/ ml
- Maximum level Grade A 100,000 cfu/ml
- Grade B 300,000 cfu/ml

•Generally a problem with:

- Dirty milking equipment
- Lack of sanitizing the milk equipment
- Improper disinfection of teats before milking

Somatic Cell Count

When udder tissue is infected, significant numbers of white blood cells accumulet in the milk.

Grade A Standards

- 1,000,000 cells/ml
- Legal Limit 1,500,000 (Protein, Fat, SCC)

Most accurate method - California Mastitis Test (CMT)

Somatic Cell Count

SCC/ml	Interpretation
Less than 1,000	Healthy gland
500,000 – 2,000	Infection by weak pathogens
Over 1,500,000	Signals infection

Interpretation of California Mastitis Test scores on goat milk.

CMT Score	Reaction	Mean no. neutrophils per ml		
0	No reaction	68,000		
Trace	Slight slime, tends to disappear with continued swirling	268,000		
1	Distinct slime but without gel	800,000		
2	Immediate gel formation; moves as a mass during swirling	2,560,000		
3	Gel develops a convex surface and adheres to the bottom of the cup	> 10,000,000		
Schalm, O.W., Carroll, F.L., and Jain, N.C.: Boyine Mastitis, Lea and Febiger, Philadelphia, PA, 1971				

Schalm, O.W., Carroll, E.J., and Jain, N.C.: Bovine Mastitis. Lea and Febiger, Philadelphia, PA, 1971.

Proper Milking practice procedure

Goal: milk clean, dry, sanitized teats Checklist (11)

- ☐ Provide a low stress environment for dairy animals
- ☐ Check foremilk and udder for mastitis
- ☐ Wash teats with an udder wash solution or pre-dip teats in an effective disinfectant product
- ☐ Dry teats completely with an individual towel/animal
- ☐ Attach milking unit within 120 seconds after initiation of stimulation

- ☐ Adjust units as necessary for proper alignment
- □Shut off vacuum before removing unit
- □ Dip teats immediately after unit removal with an effective disinfectant product
- □ Importance of hygiene
 - ☐ Mammary gland
 - ☐ Milking equipment
- ☐ Grouping and segregation
- □ Record individual production, treatments

National Mastitis Council revised 2013

Summary

Proper management practices include:

- Keep records
- Evaluation environmental stressors: pen cleanliness, overstocking, parasites, proper nutrition, etc...
- Monitor SCC (never go over 1.5 million)
- Culling problem animals
- •Segregate animal with mastitis and milking after health animals will reduce the risk of contamination of herd.

Summary

Mastitis is the principal factor that affect the milk in Goats. Its presence could result in subclinical and clinical symptoms.

Generally, the lack of good management practice in the milking parlors is the principal factor of mastitis.

Environmental conditions can spread mastitis in your herd or flock.

In the United States the incidence of mastitis is 20% and represents a estimate of more than \$50 million loss/ year.

Francisco Rivera,

UF/IFAS Extension Hillsborough County Small Farms Agent

