

IFAS ExtensionUNIVERSITY of FLORIDA

Small Ruminant Production Conference Nutrition for Breeding flocks

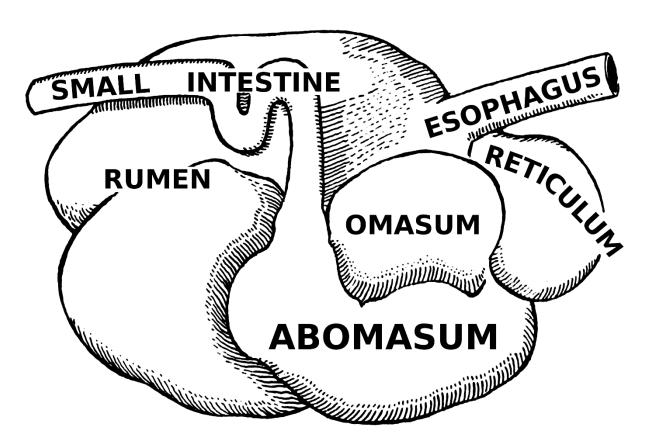
Diwakar Vyas, PhD

Department of Animal Sciences

University of Florida

OVERVIEW

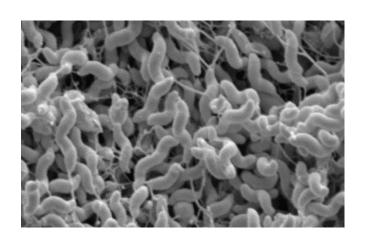
- Fundamental of Nutrition
 - TDN
 - CP
- Pre-breeding nutrition and reproductive outcomes in ewes
- Diet formulation
- Summary

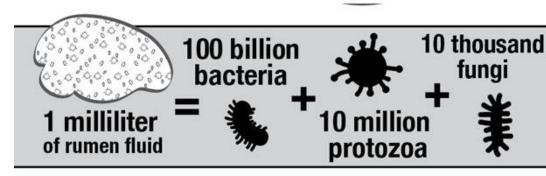


IMPORTANCE OF NUTRITION

- Feed accounts for the majority of the cost of raising sheep
- Nutrition is foundation of good health
- Animals on high plane of nutrition are more resistant to many diseases
- Nutritional problems are second only to respiratory problems in frequency of occurrence
- Nutrition has large effect on reproduction

RUMEN





RUMEN

- Fermentation chamber
- Feed is digested by rumen microbes
 - Bacteria, protozoa
 - Creates lost of gases (methane)
 - Ruminants have to be able to eructate (belch)

≥ 1,000,000,000,000,000 rumen bugs per cow

NUTRIENTS REQUIRED

- Energy (Total digestible nutrients)
 - Estimate of total digestible energy in the diet
 - Expressed in kg, lb, or percent
 - •digestible crude protein (CP) + (digestible crude fat (EE) x 2.25)
 - + digestible cell wall (NDF) + digestible nonstructural carbohydrate (NSC).

NUTRIENTS REQUIRED

- Protein (Crude)
 - Crude estimate of protein
 - Rumen degradable protein (RDP)
 - Rumen undegraded protein (RUP)

NUTRIENTS REQUIRED

Minerals

- Macro-minerals (Ca, P, Na, Cl, K, Mg, S)
- Micro-minerals (Co, Cu, F, Fe, I, Mn, Mo, Se, Zn)

Vitamins

- Fat soluble: A, D, E, K
- Water soluble: C and B-complex
- Water

NUTRITION OF FORAGES

Forage	CP %	TDN %
Bahiagrass	8-11%	50-54%
Bermudagrass	9-11%	50-58%
Pearl Millet	8-14%	50-58%
Sunn Hemp	25-30%	65-71%
Crabgrass	10-14%	55-60%
Annual Ryegrass	10-17%	56-64%
Oats	10-14%	55-62%
Red Clover	14-16%	57-62%

NUTRIENT DENSITY

10 lbs TDN

25 lb Straw

11 lb Corn

18 lb Alfalfa

NUTRIENT DENSITY

1 lb Protein

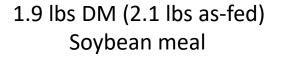
25 lb Straw

2 lb Soybean meal

5.5 lb Alfalfa

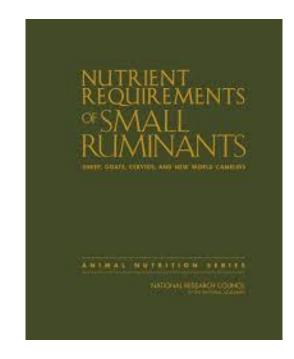
CP REQUIREMENT

150 lb ewe with twin peak lactation needs 0.9 lbs crude protein



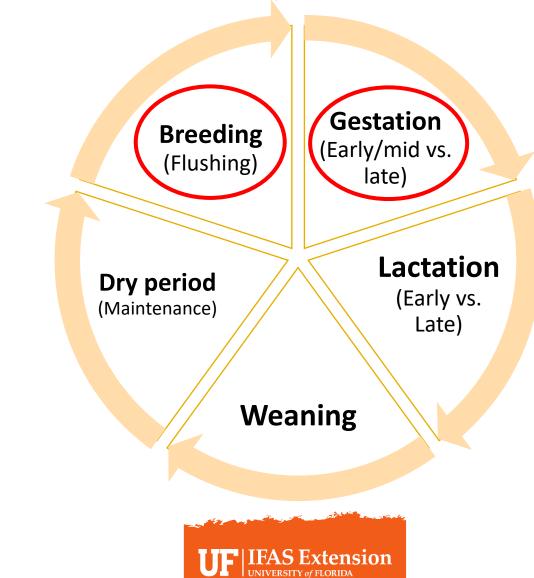
11 lbs DM (12.5 lbs as-fed)
Corn

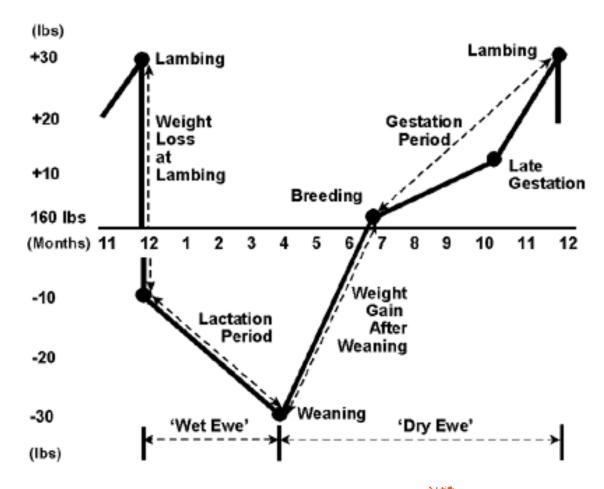
5 lbs DM (5.6 lbs as-fed) Alfalfa hay



25 lbs DM (28 lbs as fed) Straw

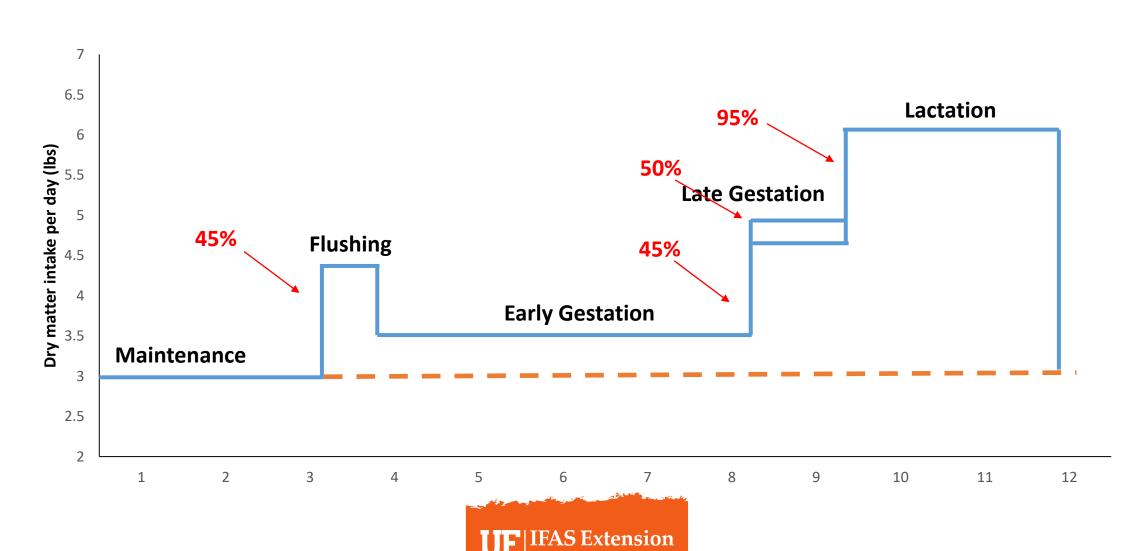
NUTRIENT REQUIREMENTS

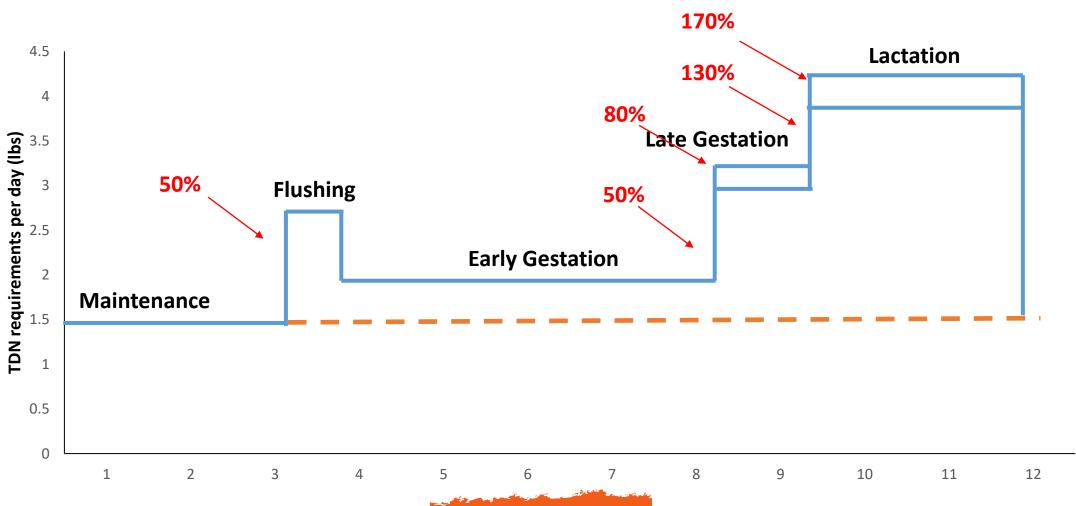

- Species
- Breed
- Body weight
- Age and Sex
- Physiological stage
- Level of production
- Environment



Check Alabama Cooperative Extension – **Nutrient Requirements of Sheep and Goats** https://www.aces.edu/blog/topics/livestock/nutrient-requirements-of-sheep-and-goats/

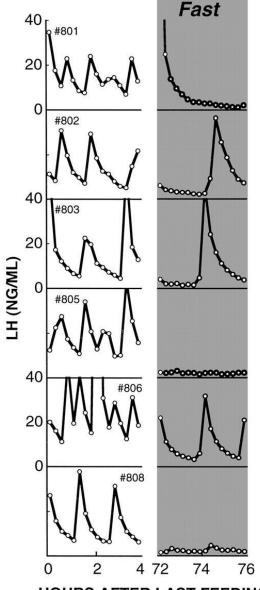
Life cycle feeding of ewes and does


EXPECTED WEIGHT CHANGES


The average 160 lb. ewe rearing twins will experience in a 12 month period

DAILY INTAKE REQUIREMENTS (175 LB EWES)

DAILY TON REQUIREMENTS (175 LB BREEDING EWES)


NUTRITIONAL MANAGEMENT IN EWES OF BREEDING AGE

- Pre breeding ovulation rate
- Early pregnancy-embryo survival
- Mid pregnancy-period of placental growth
- Late pregnancy-fetal growth, development, colostrum supply and mammary development

Definition: Temporary but purposeful elevation of plane of nutrition around breeding time to boost ovulation, conception, and embryo implantation rates

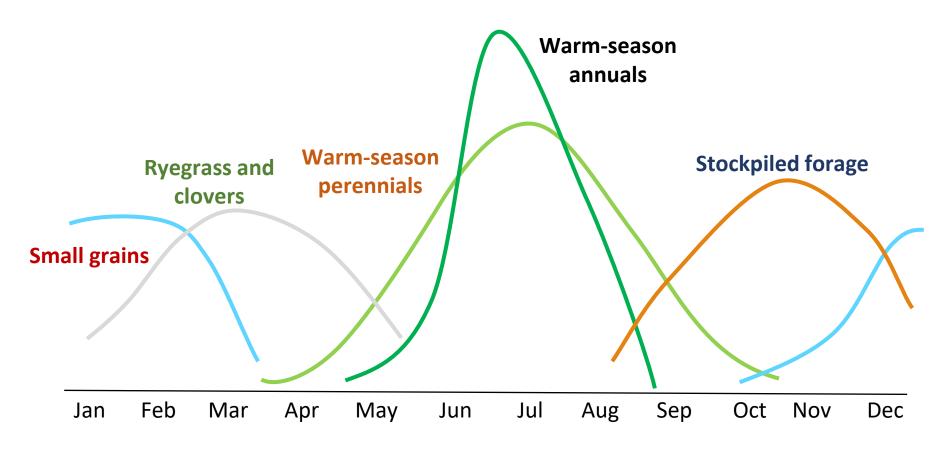
Lambing crop/Kidding rates: Improve by 10-20%

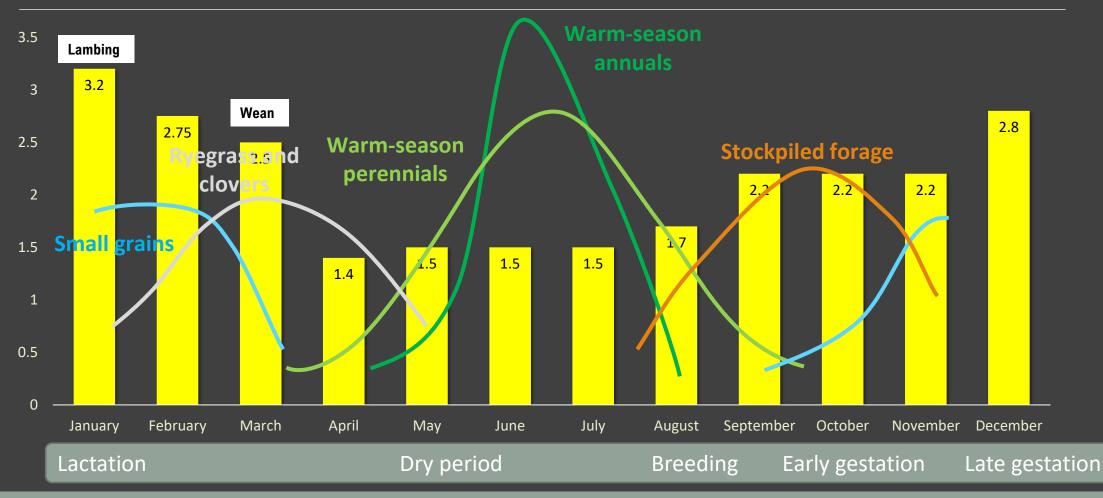
Considerations

- Increasing nutrition (primarily energy) for as little as 4-5 days can improve ovulation in under-fed ewes
- Ewes: Start flushing 2 weeks before breeding
- Does: 3-4 weeks before breeding
- Ewes/Does in positive energy balance (actively gaining weight) prior to mating tend to ovulate more than in under-fed animals
- Fat ewes (BCS ≥ 4) show little response to a pre-breeding energy boost than thin ewes (BCS≤ 2)

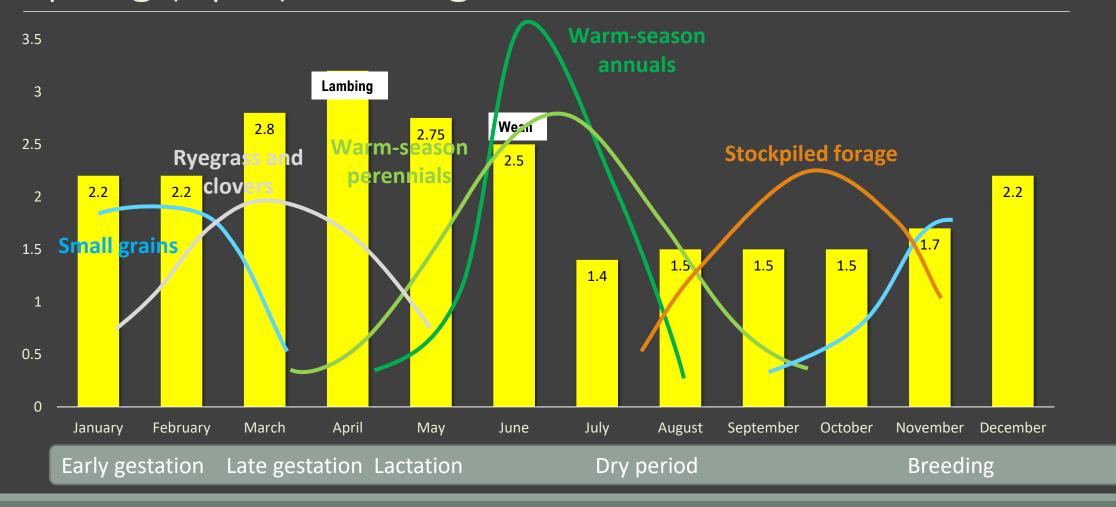
- High energy feeds (corn, barley, wheat, oats, milo)
 - 0.5-1 lb grain per animal per day
 - Gradual adaptation is essential
 - Adequate bunk space is required
- High protein feeds (Only if animals are on protein-deficient diets)
 - Fresh alfalfa, clovers, vetches, birdsfoot trefoil, and other legumes contain estrogen like compounds
 - Legume and grass hays do not have this estrogenic effect.

Herd make-up and resources available


- Identify animals most suitable for flushing (Optimum BCS: 3.0-3.5)
- If adding grains not feasible, good quality pasture can be set aside
- Legume pastures should be avoided



THINK ABOUT YOUR FORAGE PRODUCTION CHART



Energy requirements of ewes (176 lbs, lbs TDN/d Winter (January lambing)

Energy requirements of ewes (176 lbs, lbs TDN/d Spring (April) lambing

FORAGE ANALYSIS

- Dairy One Lab (Ithaca, NY)
- Dairyland Laboratories (Arcadia, WI)
- Rock River lab (Watertown, WI)
- Cumberland Valley lab (Waynesboro, PA)
- Forage Evaluation Support lab (Gainesville, FL)

Forage Evaluation Support Laboratory

Responses to Expect

- Increases of 25% are typical, increases up to 57% have been observed in thin ewes
- Flushing response may be lost if ewes go into negative energy balance (loose weight) in early pregnancy due to embryonic loss
- Conversely over feeding into early pregnancy may depress rate of embryos that implant
- Gains during flushing may be lost via enhanced embryonic loss

Nutritional target

- 50-100% increase in energy intake over maintenance (1.5-2x) for 2-3 weeks
- Increase in body condition score of 0.5 units over this period (7-10 lbs)
- Place sheep in positive weight gain
- Increase or decrease flushing length based on condition score
- In grazing systems: Correct stocking rate and forage quality
- Can be done precisely with energy supplement (corn, barley, quality forage etc.)
- Embryo retention/implantation may be reduced by elevated energy intake in early pregnancy so best to stop supplementation at ram turn-in or ~7 d later

POST-BREEDING FLUSHING

Flushing for 4 weeks is recommended, in a flock with low body condition score

• Early embryonic death occurs in the first month of gestation, probably due to

maternal nutrition.

CONSEQUENCE OF POOR NUTRITION

Underfeeding

Pregnancy toxemia

Milk fever

Weaker lambs and kids

Higher neonatal mortality

Quantity and quality of colostrum

Less milk production

Overfeeding

Dystocia

More prone to prolapse

Oversized lambs have higher mortality

Expensive

Breeding

BW, Ib	DMI, Ib	% BW	TDN, lb	CP, Ib
132	2.53	1.92	1.34	0.196
154	2.86	1.85	1.52	0.218

Diet formulation-1

Feed stuff	As Fed	DMI, lbs	TDN, lbs	CP, lbs
Bermudagrass hay	3.20	2.85	1.51	0.28
Corn grain, whole	0.00	0.00	0.00	0.00
Total nutrient supplied			1.42	0.27
Requirements			1.52	0.22

Feeds available

Hay	% DM	% TDN	% CP
Bermuda grass hay	89.0	53.0	10.0
Corn grain	88.0	88.0	9.0

Diet formulation-2

Feed stuff	As Fed	DMI, Ibs	TDN, lbs	CP, lbs
Bermudagrass hay	2.50	2.23	1.18	0.22
Corn grain, whole	0.50	0.44	0.39	0.04
Total nutrient supplied			1.57	0.26
Requirements			1.52	0.22

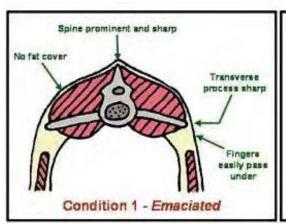
SUMMARY

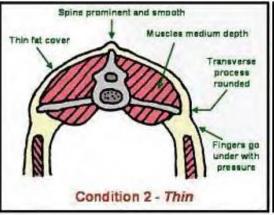
- Increasing plane of nutrition 2-3 weeks before breeding can improve lamb and kid crop
- Grains or improved pasture can be used for providing higher plane of nutrition
- Body condition score is essential management practice for assessing adequacy of feeding program
- Analyzing forages is key to effective diet formulation

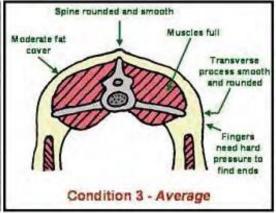
Diwakar Vyas
diwakarvyas@ufl.edu
352-294-1079

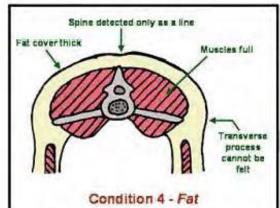
Body condition scoring

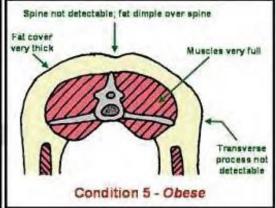
 Evaluate adequacy of previous feed supply


- Determine future feed requirements
- Accessing the health status of individual animals

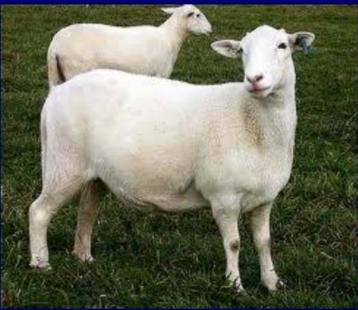







BODY CONDITION SCORING

1 BCS = ~ 13 % change in BW


Adapted from "Body Condition Scoring of Sheep" by J.M. Thompson and H. Meyer (Oregon State University).

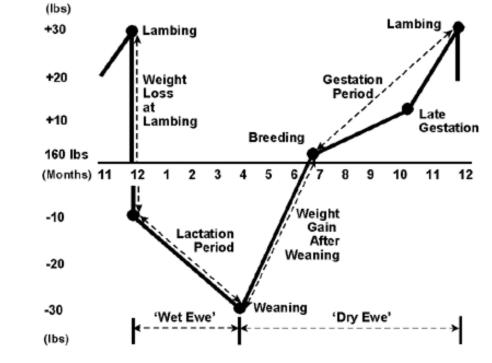
Body Condition Score

3 or 3.5

4 or 5.5

BODY CONDITION SCORE

Ewes and does: Never 1 or 5 (Always 2 to 4)


- **Breeding-** BCS= 3.0-3.5
- **Lambing-** BCS = 2.5-3.0
- Weaning- BCS = 2 (at minimum)
- Dry period- BCS = 3.0-3.5

Rams and Bucks:

Pre-breeding: 3-4

Low BCS (2 or less) during late gestation and lambing:

Pregnancy toxemia (2+ lambs/kids)

RAM NUTRITION

